·学习经历:
1989,04 – 1992,06日本静冈大学电子工学学院工学博士
1988,01 – 1989,03日本静冈大学电子工学系进修生
1982,09 – 1984, 10清华大学计算机科学与技术系硕士
1978,03 – 1982,07清华大学计算机科学与技术系学士
·工作经历:
2023,12–现在中国科学院深圳先进技术研究院研究员
2022,04- 现在 日本北陆先端科学技术大学院大学名誉教授
2001,04 -2022,03日本北陆先端科学技术大学院大学教授,日本石川
2009,10 -2023,12 天津大学计算机学院 历任院长、教授(兼职)
2002,10– 2003,09法国科学院语音通信研究所一级研究科学家(ICP),法国格鲁诺布尔
1992,07– 2006,09 日本ATR人间信息科学研究所 历任研究员、主任研究员、客座研究员,日本京都
1998,08 – 1999,07加拿大滑铁卢大学电子与计算机工程系访问学者,加拿大滑铁卢
1984,11– 1988,01 天津大学计算机科学与技术系历任助教、讲师
·国际影响力
第11届语音生成国际大会主席,2017年10月,中国天津
第10届中文口语信息处理国际大会主席,2016年10月,中国天津
第9届中文口语信息处理国际大会专题报告,2014年9月,新加坡
2022-现在Frontier in Language Science, 副主编
·所获荣誉
1988,天津市科技进步三等奖,“汉语语言合成系统”,党建武(唯一获奖者)
1994,日本电气通信基础技术研究所科学发明奖,党建武,本多清志
2014,国家教学成果二等奖,获奖题目:“融合专业教学,提升计算科学思维能力,推进计算机基础教学改革与实践”;党建武(排名第六)
2020,天津大学优秀博士论文,郭凤羽,论文题目:“融合不同层次线索的隐式篇章关系识别研究”,(导师:党建武)
2022,天津大学优秀博士论文,王晓宝,论文题目:“在线社交网络中面向多阶段的情绪传播机理研究”,(导师:党建武、金弟)
·科研成果
2004-2023 在日本主持了多项国家级重大项目及JSPS的项目包括“语音合成研究”、“语音生成建模及其在言语障碍中的应用”、“情感语音表征的神经机理研究”、“语音生成与感知的神经机理研究”等,研究费总额:5000多万日元;作为第二主持人参与多个国家级项目,经费总额:13500多万日元。
2013年 国家重大基础研发计划(973)项目 “互联网环境中文信息处理的基础理论与方法”,3280万,项目首席科学家。
2013年 国家基金重点项目 “语音产生过程的神经生理建模与控制”,300万,主持人。
2023年 国家面上基金 “言语交互意图理解的神经机理与建模研究”, 55万,主持人
Selected Journalpapers
1.Z Li, G Zhang*, S Okada, L Wang, B Zhao, J Dang*(2024.MBCFNet: A Multimodal Brain–Computer Fusion Network for human intention recognition,Knowledge-Based Systems 296, 111826(IF:7.2,中科院:一区)
2.Y Liao, Y Liu, S Liao*, Q Hu, J Dang(2024).Theoretical analysis of divide-and-conquer ERM: From the perspective of multi-view,Information Fusion 103, 102087(IF:18.6,中科院一区)
3.Y. Lin, L. Wang*, J. Dang, S. Li, C. Ding(2023), "Disordered Speech Recognition Considering Low Resources and Abnormal Articulation," Speech Communication. 2023, 155: 103002. (IF:3.2,中科院三区)
4.Lili Guo, Shifei Ding*, Longbiao Wang*,JianwuDang(2023),DSTCNet: Deep Spectro-Temporal-Channel Attention Network for Speech Emotion Recognition,IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,1-10,2023(IF:10.4,中科院:Q1;JCR:Q1)
5.Y Gao, L Wang*, J Liu, J Dang, S Okada(2023),Adversarial Domain Generalized Transformer for Cross-Corpus Speech Emotion Recognition,IEEE Transactions on Affective Computing, 1-12, 2023 (IF:11.2,中科院:Q2;JCR:Q1)
6.B Zhao, G Zhang*, L Wang, J Dang*(2023),Multimodal evidence for predictive coding in sentence oral reading,Cerebral Cortex, bhad145, 2023 (IF: 3.7,中科院:Q2;JCR:Q1)
7.H Zhang, L Wang*, KA Lee, M Liu, J Dang, H Meng(2023),Meta-generalization for domain-invariant speaker verification,IEEE/ACM Transactions on Audio, Speech, and Language Processing 31, 1024-1036, 2023 (IF: 5.40,中科院:Q2;JCR:Q1)
8.Z Li, G Zhang*, L Wang, J Wei, J Dang*(2023),Emotion recognition using spatial-temporal EEG features through convolutional graph attention network,Journal of Neural Engineering 20 (1), 0160464, 2023 (IF: 4.0,中科院:Q2;JCR:Q2)
9.K Khysru, J Wei*, J Dang,Research on Tibetan Speech Recognition Based on the Am-do Dialect,Computers, Materials & Continua 73 (3), 2022 (IF: 3.1,中科院:Q3;JCR:Q2)
10.Y Wang, D Jin*, D He, K Musial, J Dang(2022),Community Detection in Social Networks Considering Social Behaviors,IEEE Access 10, 109969-109982,2022 (IF: 3.90,中科院:Q3;JCR:Q2)
11.D Zhou, G Zhang*, J Dang*, M Unoki, X Liu(2022),Detection of brain network communities during natural speech comprehension from functionally alignedEEGsources,Frontiers in Computational Neuroscience 16, 919215,2022 (IF: 3.2,中科院:Q4;JCR:Q2)
12.L Guo, L Wang*, J Dang*(2022), Learning affective representations based on magnitude and dynamic relative phase information for speech emotion recognition, ES Chng, S Nakagawa, Speech Communication 136, 118-127,2022 (IF: 3.2,中科院:Q3;JCR:Q2)
13.S Song, C Ma, W Sun, J Xu, J Dang, Q Yu*(2022), Efficient learning with augmented spikes: A case study with image classification, Neural Networks 142, 205-212.2021 (IF: 7.8;中科院:Q1;JCR:Q1)
14.Z Peng, J Dang*, M Unoki, M Akagi(2021), Multi-resolution modulation-filtered cochleagram feature for LSTM-based dimensional emotion recognition from speech,Neural Networks 140, 261-273, 2021 (IF: 7.8;中科院:Q1;JCR:Q1)
15.M Liu, L Wang*, J Dang, KA Lee, S Nakagawa(2021), Replay attack detection using variable-frequency resolution phase and magnitude features, Comput. Speech Lang. 66, 101161, 2021 (IF: 4.3,中科院:Q3;JCR:Q3)
16.Q Yu, C Ma, S Song, G Zhang, J Dang, KC Tan(2021), Constructing accurate and efficient deep spiking neural networks with double-threshold and augmented schemes, IEEE Transactions on Neural Networks and Learning Systems 33 (4), 1714-1726, 2021(IF:10.4,中科院:Q1;JCR:Q1)
17.Peng, S., Hu, Q., Dang, J., & Wang, W. (2020). Optimal feasible step-size based working set selection for large scale SVMs training. Neurocomputing, 407, 366-375.(IF:6,中科院:2区)
18.Yu, Q., Li, S., Tang, H., Wang, L., Dang, J., & Tan, K. C. (2020).Toward Efficient Processing and Learning With Spikes: New Approaches for Multispike Learning. IEEE Transactions on Cybernetics.(IF:9.4,中科院:1区)
19.Gaoyan Zhang, Yuke Si, Jianwu Dang*(2019)“Revealing the Dynamic Brain Connectivity from Perception of Speech Sound to Semantic Processing by EEG”,Neuroscience, Vol. 415, pp.70-76.(IF:2.9,中科院:3区)
20.Wei Feng, Xuecheng Nie, Yujun Zhang, Zhi-Qiang Liu, Jianwu Dang (2019)“Story co-segmentation of Chinese broadcast news using weakly-supervised semantic similarity”Neurocomputing, 355, pp.121-133.(IF:6,中科院:2区)
21.Z. Peng, Qinghua Hu,J. Dang*(2019) Multi-kernel SVM based depression recognition using social media data, International Journal of Machine Learning and Cybernetics, Vol. 10, 1, pp 43–57(IF:3.1,中科院:3区)
22.Wei Feng,XuechengNie, Yujun Zhang, Lei Xie, J. Dang, (2018) Unsupervised measure of Chinese lexical semantic similarity using correlated graph model for news story segmentation, Neurocomputing, 318, pp.236-247(IF:6,中科院:2区)
23.Zhao B, Dang J*, Zhang G*.(2017)EEG Source Reconstruction Evidence for the Noun-Verb Neural Dissociation along Semantic Dimensions[J]. Neuroscience, 2017, 359.
24.J. Dang*, J. Wei, K. Honda, and Takayoshi Nakai (2016). “A study on transvelar coupling for non-nasalized sounds,” J. Acoust. Soc. Am. 139 (1), 441–454(IF:2.9,中科院:3区)
25.D. Ying, Y. Yan,J. Dang, and F. Soong (2011,11) "Voice Activity Detection Based On An Unsupervised Learning Framework",IEEE Trans. Audio, Speech and Language Processing,Vol. 19, No.8, 2624 - 2633(IF:4.1,中科院:2区)
26.X. Lu andJ. Dang. (2008) “An investigation of dependencies between frequency components and speaker characteristics for text-independent speaker identification”, Speech Communication, 50, 312-322(IF:3.2,中科院:3区)
27.Dang, J.and Honda, K. (2004) “Construction and control of a physiological articulatory model,” Journal of Acoustical Society of America, 115(2), 853-870(IF:2.9,中科院:3区)
28.Dang, J. and Honda, K. (2002) " Estimation of vocal tract shape from sounds via a physiological articulatory model," J. Phonetics, 30, 511-532(IF:1.9,中科院:1区)
·个人专利
1ZL201910152781.92021-2041一种基于藏文部件的端到端架构拉萨方言语音识别方法中国1
2ZL201910166373.92021-2041基于注意力驱动循环卷积网络的环境自适应语音增强算法中国3
3ZL201910140461.12021-2041基于生成对抗网络的深度特征的语音去混响方法中国3
4ZL201910087795.72021-2041基于自适应滤波器振幅相位特征提取的录音欺诈检测方法中国3
5ZL201910143499.42021-2041基于关键点编码和卷积神经网络进行鲁棒的声音识别方法中国4